Geometrical approach to mutually unbiased bases

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 409177
(http://iopscience.iop.org/1751-8121/40/30/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.144
The article was downloaded on 03/06/2010 at 06:06

Please note that terms and conditions apply.

Corrigendum

Geometrical approach to mutually unbiased bases

A B Klimov, J L Romero, G Björk and L L Sánchez-Soto 2007 J. Phys. A: Math. Theor. 40 3987-3998

Equation (4.9) should read

$$
\alpha^{2}=\mu \alpha, \quad \beta^{2}=\mu^{2} \beta
$$

The parametrization of basis 2 in table 4 should read

$$
\alpha=\sigma^{2}\left(\kappa+\kappa^{2}\right), \quad \beta=\sigma^{2} \kappa+\kappa^{2}
$$

The parametrization of basis 2 in table 5 should read

$$
\alpha=\sigma\left(\kappa+\kappa^{2}\right), \quad \beta=\kappa+\sigma \kappa^{2}
$$

The headings of tables 4,5 , and 6 should all read 'Bundle consisting of two exceptional curves, one α-curve, one β-curve, and a ray.'

Finally, the first sentence under equation (5.1) should read 'It is clear that under local transformations (rotations by $\pi / 2$ radians around the $z-, x$-, or y-axes) applied to the j th particle $(j=1,2)$, the indices of the displacement operator are transformed as follows:'

